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The classical dynamics of two electrons in the Coulomb potential of an attractive nucleus is chaotic in large
parts of the high-dimensional phase space. Quantum spectra of two-electron atoms, however, exhibit structures
which clearly hint at the existence of approximate symmetries in this system. In a recent paperfPhys. Rev.
Lett. 93, 054302s2004dg, we presented a study of the dynamics near the triple collision as a first step towards
uncovering the hidden regularity in the classical dynamics of two electron atoms. The nonregularizable triple
collision singularity is a main source of chaos in three body Coulomb problems. Here, we will give a more
detailed account of our findings based on a study of the global structure of the stable and unstable manifolds
of the triple collision.
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I. INTRODUCTION

Understanding the gravitational three-body problem as the
simplest nontrivial many-body system is of prime impor-
tance when considering dynamical properties of the solar
system such as its long term stability. Poincaré’s proof of the
nonintegrability of the three-body problem in 1890 showed
that closed form solutions of many-body systems are the
exception rather than the rule. This insight stood at the be-
ginning of modern dynamical systems theory concerned with
developing tools to understand the structures and stability
properties of nonlinear dynamics. Still, more than one hun-
dred years later, we know remarkably little about the dynam-
ics of three-body problems due to the large dimensionality of
the system, the long range interactions and the complexity of
the dynamics near the non-regularizable triple collision; see
f1g, for a well written account of the history of celestial
dynamics before and after Poincaré’s discovery.

The microscopic counterpart of planetary motion, the dy-
namics of electrically charged particles, occurs naturally in
atoms and molecules; it has thus mainly been studied in the
context of quantum mechanics. First attempts to analyze the
classical dynamics of many-body Coulomb systems such as
two-electron atoms have been undertaken by the founding
fathers of quantum mechanics in order to extend Bohr’s hy-
drogen quantization rules to more complex atoms. The fail-
ure to do so and the discovery of Schrödinger’s equation
brought this project to an abrupt halt in 1925. Only a better
understanding of the use of semiclassical methods for non-
integrable systems pioneered by Gutzwiller and othersf2g in
the 1970’s brought three-body Coulomb systems back onto
the agenda. These efforts led to the successful semiclassical
description of parts of the helium spectra in terms of collin-
ear subspaces of the full three-body problem in the 1990’s
f3,4g. Surprising regularities and selection rules in the spec-
trum of two electron atoms, which have puzzled atomic
physicists for decades, could now be explained in terms of
stability properties of an underlying classical dynamics; see
the reviewf5g for more details.

Advances in a semiclassical treatment of the three-body
Coulomb problems were possible only due to a better under-

standing of the classical dynamics in these systems. The ex-
istence of a perfect Smale horseshoe giving rise to a com-
plete binary symbolic dynamics were uncovered for the
collinear configuration where the two electrons are on differ-
ent sides of the nucleusstheeZeconfigurationd f3,5–8g. Such
a behavior is a rare feature in physically relevant dynamical
systems and is here intricately linked to the presence of the
nonregularizable triple collision. The collinear phase space
where both electrons stay on the same side of the nucleus—
theZeeconfiguration—has been found to be largely stable in
the full 5 dimensional phase space for 1,Z,10 f4,5,9g.

Studies of the dynamics beyond the collinear configura-
tions have so far remained raref10,11g. Quantum mechanical
calculationsf12,13g suggest, however, that two-electron at-
oms have a variety of approximate symmetries which ex-
press themselves in the form of approximate quantum num-
bers in spectra of these atoms. This has been explained
qualitatively by group theoretical argumentsf12g and in
terms of adiabatic invariantsf14g, seef5g for an overview. It
is thus only natural to ask how the existence of such approxi-
mate symmetries is reflected in the classical dynamics of the
corresponding three-body Coulomb problem.

Recently, we presented an analysis of the classical dynam-
ics near the triple collision in two-electron atoms in the full
L=0 phase spacef15g. The triple collision and associate col-
lision manifolds are the key in understanding the structure of
the dynamics of the 5-dimensional phase space. Here, we
will give a more detailed account of the surprising effects
observed in classical scattering signals below the three par-
ticle breakup energy as well as how these effects arise due to
the topology of the phase space and the particle exchange
symmetry.

The paper is organized as follows: in Sec. II we introduce
the McGehee scaling technique in hyperspherical coordi-
nates. In Sec. III, we describe the structure of the collision
manifolds in the phase space forE=0 which turns out to be
relatively simple. We then treat the dynamics near the triple
collision for E,0 in Sec. IV and we present scaling laws
similar to Wannier’s threshold lawf16g in some detail. In the
Appendix, we give the equations of motions combining
Kustaanheimo-Stiefel transformation with McGehee scaling
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and discuss the properties of a specific surface of section
used in the main text.

II. EQUATIONS OF MOTION

The classical three-body system can be reduced to four
degrees of freedom after eliminating the center of mass mo-
tion and incorporating the conservation of the total angular
momentum. We will focus here on the special case of zero
angular momentum, for which the motion of the three par-
ticles is confined to a plane fixed in configuration spacef17g
and the problem reduces to three degrees of freedom, that is,
a five dimensional phase space for fixed energy. We will as
usual work in the infinite nucleus mass approximation; the
Hamiltonian including finite nuclear mass terms can be
found in f7,8g. In the following we will use scaling proper-
ties in the three body Coulomb problem in two different
ways: first, by scaling the phase space coordinates with re-
spect to energy and, second, by scaling out an overall size
parameter thus considering only the shape dynamics of the
system.

By choosing a scaling transformation with respect to the
total energyE according to

r i = uEur 8i, pi =
1

ÎuEu
p8i , s1d

where r i, pi refer to the new coordinates and momenta of
electroni =1 or 2, respectively, and introducing a time trans-
formation

t = ÎuEu3t8, s2d

one deduces the new equations of motion from the Hamil-
tonian

H =
p1

2

2
+

p2
2

2
−

Z

r1
−

Z

r2
+

1

r12
= 5+ 1: E . 0,

0: E = 0,

− 1: E , 0.
6 s3d

Here,Z refers to the charge of the nucleussin units of the
elementary charged and masses are given in units of the mass
of the electron. We will in general considerZ=2, that is,
helium, if not specified otherwise. Furthermore,r i, r12 de-
notes the nucleus-electron and electron-electron distances,
respectively.

From Eq.s3d it is clear that we only have to consider three
different values of the energy. Our ultimate goal is to better
understand the bound and resonance states in quantum two-
electron atoms and we are thus most interested in the classi-
cal dynamics forE,0, that is, we will considerE=−1. In
this regime, only one electron can escape classically and it
will do so for most initial conditions. It turns out, however,
that one can learn a lot about theE,0—dynamics by ana-
lyzing the dynamics at the three-particle breakup threshold
E=0 in detail. The phase space can be reduced to 4 dimen-
sions in this case and the dynamics in the reduced space
turns out to be relatively simple as will be discussed in Sec.
III. A similar approach has been employed by Wannierf16g;
by extrapolating dynamical behavior atE=0 to the dynamics

for E.0, he was able to deduce his celebrated threshold law
for the total two-electron ionization cross section which turns
out to be completely classical in naturef18g.

How are the spacesE= ±1 and E=0 connected? When
considering scattering trajectories where one electron, say
electron 1, approaches the nucleus fromr1=` with energy
E1, the energy scaling property, Eqs.s1d ands2d, implies that
the dynamics depends on the ratioE/E1 only rather than on
the absolute values ofE andE1 separately. The limitE→0 is
thus equivalent toE/E1→0 which can for fixedE=E1+E2
= ±1 be achieved by for example considering the limitE1
→`. sIn the same way, we may consider the limitE→0 for
fixed E1.d As we will see in Sec. IV, the limitE→0 is also
closely related to the dynamics near the triple collision.

The dynamics forE=0 can be reduced to 4 dimension
using an additional scaling relation. Following McGehee
f19g, one uses the similarity of the overall dynamics when
rescaling the total size of the system. This means that the
shape dynamics given by the relative positions of the three
particles in space decouples from the overall change in size
of the system in certain limits. We introduce the hyperradius
R=Îr1

2+r2
2 as an overall scaling parameter and shape param-

eters given by the hyperanglea=tan−1sr2/ r1d and the inter-
electronic angleu= / sr 1,r 2d=u1−u2 with ui being the azi-
muthal angles. The Hamiltonians3d written in these
hyperspherical coordinates has for angular momentumL=0
the form

H =
1

2
Spr1

2 +
pu1

2

r1
2 + pr2

2 +
pu2

2

r2
2 D +

1

R
Vsa,ud

=
1

2
SpR

2 +
pa

2

R2 +
pu

2

R2 cos2 a sin2 a
D +

1

R
Vsa,ud, s4d

with

Vsa,ud = −
Z

cosa
−

Z

sina
+

1
Î1 − 2 cosa sina cosu

.

Note, that forL=0, we have

pu = pu1
= − pu2

, s5d

wherepu is the momentum conjugate to the interelectronic
angleu. The triple collision corresponds toR=0, here. For
Hamiltonians of the forms4d, one can separate the shape
dynamics from the overall scale dynamics given by the time
dependence of the hyperradiusRstd. Such a separation is ex-
act forE=0 and reflects the dynamics in the limitR→0, that
is, close to the triple collision forEÞ0. In analogy withs1d
ands2d, one defines thestime-dependentd scaling transforma-
tion

ā = a, ū = u, R̄=
1

R
R= 1,

p̄R = ÎRpR, p̄a =
1

ÎR
pa, p̄u =

1
ÎR

pu,
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dt̄ =
1

R3/2dt, H̄ = Ē = RE. s6d

Note that the above transformations are invariant under
rescaling the energy according tos1d and s2d, that is, it is
again sufficient to consider the caseE= ±1 or 0 only. The
transformationss6d do, however, destroy the symplectic
structure of the original differential equations; the new

HamiltonianH̄ is in particular no longer a constant of motion
for EÞ0. The equations of motion with respect to the res-
caled time are

ȧ = pa, ṗa = −
1

2
pRpa + pu

2cos2 a − sin2 a

sin3 a cos3 a
−

]

]a
Vsa,ud,

u̇ =
pu

sin2 a cos2 a
, ṗu = −

1

2
pRpu −

]

]u
Vsa,ud,

H̄
˙

= pRH̄, ṗR =
1

2
pa

2 +
1

2

pu
2

cos2 a sin2 a
+ H̄, s7d

with

H̄ = RH=
1

2
SpR

2 + pa
2 +

pu
2

cos2 a sin2 a
D + Vsa,ud = RE,

s8d

where we skip the bar signs again for convenience except for

H̄.
The new equations of motions7d are indeed independent

of R; the explicit time dependence ofRstd can be recovered

from s8d for EÞ0 or may be obtained by integratingṘ
=pRR along a trajectory forE=0.

The problem simplifies when considering the special ini-

tial conditionH̄=0, that is,E=0 or R=0. First, a true reduc-

tion in dimensionality is achieved asH̄ becomes a constant
of motion and we are left with only four independent coor-

dinates. Secondly, forH̄=0 we haveṗRù0, and the scaled
momentumpR increases monotonically with time. This leads

to a relatively simple overall dynamics in theH̄=0 subspace
which will be studied in detail in the next section.

The triple collision itself has been lifted from the equa-
tions of motionss7d by the time transformation ins6d. Two
fixed points are created instead which are related to the triple
collision. These fixed points cannot be reached in finite
sscaledd time which is a manifestation of the nonregulariz-
ability of the triple collision singularity. Other singularities
are still present ins7d, the binary collisions atr i =0 or
equivalently ata=0 or p /2. They can be regularized by
standard techniques such as Kustaanheimo-StiefelsKSd
transformationf8,23,24g. A set of singularity-free equations
of motions is obtained by first employing a KS transforma-
tion using parabolic coordinates and then using McGehee’s
scaling technique for this new set of coordinates. Details of
the derivation can be found in Appendix A; the resulting
differential equationssA7d, sA11d, andsA14d have been used
throughout the paper for numerical calculations. The descrip-
tion in terms of parabolic coordinates is, however, less trans-

parent than the hyperspherical coordinates and the latter are
thus used in the discussion of the dynamics.

At the binary collisionsa=0 or a=p /2, the value ofpa

makes an instantaneous transition from7` to ±` whereas
all other variables behave smoothly at these points. We may
thus identifypa before and after the collision by introducing
the regularized variable

p̄a = pa sin 2a. s9d

The resulting set of smooth hyperspherical coordinates in-
cluding the regularizedp̄a will be used in our description of
the phase space structures. Note, however, that in contrast to
the case of the collineareZesubspacef6,7,19g, s9d cannot be
used to remove the binary collision singularities in the equa-
tions of motions. Instead, one has to go to parabolic coordi-
nates to obtain a set of fully regularized ODE’s as presented
in Appendix A.

III. DYNAMICS FOR E=0

A. Fixed points and invariant subspaces

In order to understand the dynamics near the triple colli-
sion for E,0 it is advantageous to analyse the topology of
the flow generated bys7d for E=0. We start by briefly dis-
cussing the fixed points and the invariant subspaces of the
dynamics in the rescaled coordinates. ForE=0, the dynamics
takes place on a 4-dimensional manifold in a 5- dimensional
space. There are two fixed points of the flow, that is,

a = p/4, u = p, pa = 0, pu = 0,

pR = ± ÎÎ2s4Z − 1d = ± P0.

These fixed points correspond to trajectories in the full phase
space where both electrons fall into the nucleus symmetri-
cally along the collinear axis, that is, thetriple collision point
sTCPd with pR=−P0 and its time reversed partner, the trajec-
tory of symmetric double escape, that is, thedouble escape
point sDEPd with pR=P0. In addition, there are three invari-
ant subspaces: the collinear spacesu=p, pu=0 stheeZecon-
figurationd and u=0, pu=0 sthe Zee configurationd and the
so-called Wannier ridgesWRd of symmetric electron dynam-
ics with a=p /4, pa=0.

In the eZespace with Hamiltonian

H̄ =
1

2
spR

2 + pa
2d −

Z

cosa
−

Z

sina
+

1

cosa + sina
= 0,

s10d

a typical trajectory represents an outer electron coming from
infinity with pR=−`, a=0 or p /2 and one of the two elec-
trons leaving towards infinity withpR→`, a→0 or p /2.
Identifying the pointspa= ±` at the binary collisionsa=0,
p /2 by usingp̄a as discussed in Sec. II, the topology of the
eZe—phase space takes on the form of a sphere with
four points taken to infinity; see Fig. 1sad f6,7,19g. The two
fixed points are located at the saddles between the arms
stretching in forward and backward directions along thepR
axis. TheeZe-space forE,0 fills the interior of the mani-
fold in Fig. 1sad.
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The Wannier ridge space described by

H̄ =
1

2
pR

2 + 2pu
2 − 2Î2Z +

1
Î1 − cosu

= 0 s11d

is, on the other hand, a compact space with the topology of a
sphere where the fixed points form opposite poles; see Fig.
1sbd. The dynamics forE=0 is trivial as the full space acts as
the unstable manifold of the TCP as well as the stable mani-
fold of the DEP. The interior of the sphere corresponds to the
phase space of the WR forE,0. The dynamics is of mixed
type containing stable islands and ergodic regions forZ
.1/4. In what follows we will not discuss the features of the
WR dynamics in more detail, seef5,21g for details as well as
f22g for a more rigorous approach. Note, that theeZecon-
figuration and the WR are connected at the fixed pointssin
E=0d and along the so-called Wannier orbitsWOd or sym-
metric stretch orbit witha=p /4, u=p, pa=0 andpu=0 with
E,0.

The overall dynamics is invariant under the transforma-
tion pj →−pj and dt→−dt with j =R,u or a reflecting the
time-reversal symmetry of the original problem. The triple
collision point and double escape point are thus equivalent
and related by time reversal symmetry.

The linearized dynamics near the fixed points can be ob-
tained directly from Eqs.s7d; for each fixed point, two of the
four eigenvectors inE=0 lie in theeZespace, the other two

on the Wannier ridge. One obtains in particular for the eigen-
values at the TCPf16g

lST

eZe=
P0

4
S1 −Î100Z − 9

4Z − 1
D eZe: stable,

lUT

eZe=
P0

4
S1 +Î100Z − 9

4Z − 1
D eZe: unstable,

lUT

WR=
P0

4
S1 ±Î4Z − 9

4Z − 1
D Wannier ridge: unstable,

s12d

and for the DEP

lUD

eZe= −
P0

4
S1 −Î100Z − 9

4Z − 1
D eZe: unstable,

lSD

eZe= −
P0

4
S1 +Î100Z − 9

4Z − 1
D eZe: stable,

lSD

WR= −
P0

4
S1 ±Î4Z − 9

4Z − 1
D Wannier ridge: stable.

s13d

The eigendirections leading out of theH̄=0 subspace are
directed along thepR axis; the corresponding stable and un-

stable manifoldsST
H̄Þ0, UD

H̄Þ0 are embedded both in theeZe
and WR space and are thus identical to the Wannier orbit.
That is, the WO forms a heteroclinic connection leading
from the DEP to the TCP. The stabilities along the eigendi-
rections are

lST

H̄Þ0 = − P0, lUD

H̄Þ0 = P0, s14d

whereP0=ÎÎ2s4Z−1d as defined above.
Table I gives an overview over how various parts of the

stable and unstable manifold of the fixed points are embed-
ded within the invariant subspaces. The TCP has, in particu-
lar, three unstable directions and two stable directions of
which one is coming from outside theE=0 subspace; see
also Fig. 1. The converse holds for the DEP which has three
stable directions all inE=0 and two unstable directions.

The TCP can only be reached by trajectories on the
2-dimensional stable manifold of the TCP which is fully em-
bedded in theeZespace; see Fig. 1sad. Trajectories inE=0
approaching the TCP in theeZespace close to theST

eZe will
leave the neighborhood of the TCP along the unstable mani-
fold UT

eZewhich leads to single ionization of one of the elec-
trons eventually. The dynamics near the TCP is thus forE
=0 well separated from the DEP and the two fixed points are
dynamically not connected.sStrictly speaking, this is true
only for Z.0.287742. . .; at the critical value the system is
degenerate, that is,UT

eZe coincides withSD
eZe f6g; this param-

eter regime is, however, physically not relevant.d
The situation changes when leaving theeZespace into the

full 4-dimensional spaceE=0. The Wannier ridge itself pro-

FIG. 1. sColor onlined The eZe manifold sad and the Wannier
ridge manifoldsbd for E=0. The angleu0 in sbd corresponds to the
maximal deviation from the collinear configurationu=p possible in
the WR for E=0 fin fact p−u0=arccoss1−1/8Z2dg. The two-
dimensional invariant subspaces are embedded in the full phase
spaceEø0 of dimension 5; the subspaces are connected at the TCP
and DEPsfor E=0d and along the Wannier orbitsWOd for E,0.
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vides now a connection between the TCP and DEP and tra-
jectories approaching the TCP can leave along the Wannier
ridge and thus come close to the DEP. The 3-dimensional
stable manifoldSD of the DEP which contains the Wannier
ridge and theSD

eZe acts in fact as the stable manifold of the
Wannier ridge itself or more preciselySWR=SDøST

eZeandSD
is thus connected toST

eZe. In what follows, theSD will be of
special importance for understanding some of the striking
features in the classical electron-impact scattering signal
found forE=0; see Sec. III C, as well as in theE,0 regime
discussed in detail in Sec. IV.

A summary of the submanifolds of the stable and unstable
manifolds of the fixed points and the spaces they are embed-
ded in can be found in Table I. Note in particular thatUT and
UD are related toSD andST by time reversal symmetry; thus,
UT together withUD

eZe form the unstable manifold of the
Wannier ridge,UWR, in E=0.

B. The stable manifold of the DEP

We analyze first the topology of the 4-dimensional invari-

ant subspaceH̄=0 which is most conveniently studied by
considering the 3-dimensional Poincaré surface of section

sPSOSd u=p, u̇ù0 in a-p̄a-pR coordinates. The surfaceu
=p is indeed a good PSOS in the sense that the flow is not
tangential to the surface except for trajectories in theeZe
space which is an invariant subspace fully embedded in the
PSOS; theeZe forms in fact the boundary of the surface of
section as can be seen from Eqs.s8d and s10d. In addition,
almost all trajectories cross the surface at least once; see
Appendix B for details.

The PSOS has ina-p̄a-pR coordinates the form of theeZe
space in Fig. 1sad. The interior of the 2-dimensionaleZe
manifold represents here, however, the domain of the
Poincaré mapu=p for puù0 andE=0; see Fig. 2. The fixed
points TCP and DEP lie on the boundary of the PSOS,
whereas the 2-dimensional Wannier ridge space in the PSOS
forms a line connecting the TCP and DEP along thepR axis
at a=p /4, pa=0.

Due toṗRù0 in s7d, pR increases monotonically with time

leading to a relatively simple overall dynamics inH̄=0. Its
important features can be characterized by the behavior of
the stable or unstable manifolds of the fixed points. Espe-
cially, the codimension one manifoldSD is a good candidate
for supplying a dividing surface in the fullE=0 phase space.
In Fig. 2, the topology of theSD in the PSOS is discussed by
showing cuts through the PSOS at fixedpR values with
pR, P0.

The SD is for −P0øpRø P0 bounded by the
1-dimensional stable manifoldSD

eZe in theeZespace, and the
2-dimensional Wannier ridge. Remarkable is the evolution of
this manifold near the TCP atpR=−P0, where the phase
space itself splits into two distinct parts. Starting at the DEP
fixed point at pR=P0, we will discuss the form ofSD by
going towards decreasingpR values which corresponds es-
sentially to an evolution of theSD backward in time. TheSD
undergoes the usual stretching and folding mechanism typi-
cal for an unstable manifold in bounded domains. The
stretching and folding is here facilitated by an overall rota-
tion of the space around the Wannier ridge axisa=p /4, pa

=0 and a certain “stickiness” neara=0 or p /2 ssee the cuts
B and C in Fig. 2d. The behavior near the binary collision
points is due to our choice of regularized momentump̄a

which projects the phase space ata=0 or p /2 onto the point
p̄a=0.

As pR moves towards the TCP at −P0, the phase space
develops a bottleneck whereas theSD stretches over the
whole phase space 5 times by now. That means, that aspR

TABLE I. Dimensions and embedding spaces of invariant subspaces of the stable or unstable manifolds
of the fixed points TCP and DEP.

ST
eZe ST

H̄Þ0 UT
eZe UT

WR SD
eZe SD

WR UD
eZe UD

H̄Þ0 ST UT SD UD

Dimension 1 1 1 2 1 2 1 1 2 3 3 2

Embedded in eZe eZe eZe eZe eZe eZe eZe eZe

WR WR WR WR

H̄=0 H̄Þ0 H̄=0 H̄=0 H̄=0 H̄=0 H̄=0 H̄Þ0 H̄=0 H̄=0

FIG. 2. sColor onlined The PSOSu=p in the E=0 subspace in
a-p̄a-pR coordinates. TheeZe space forms the boundary of the
PSOS; the WR connects the TCP and DEP along thepR axis ata
=p /4, pa=0. Various cuts of the PSOS at fixedpR values together
with the SD are shown below. The two arms of theSD stretching
from the WR towards theSD

eZe on theeZeboundary are shown as
full and dashed line, respectively.sThe cuts C–E are drawn sche-
matically to enhance important features.d
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decreases further passing through −P0, the SD is cut at the
TCP into distinct parts; see D in Fig. 2. We end up with 5
pieces of theSD in each arm. The only way to leave the TCP
sbackward in timed is along the stable manifoldST

eZe in the
eZe space. This implies that the 5 pieces in each arm are
connected at theST

eZe for pR,−P0 forming two loops and
one connection to theeZe boundary atSD

eZe, see Fig. 2sed.
The ST

eZe itself is thus a boundary of theSD without being a
part of it andSD connects the stable manifoldsST

eZe andSD
eZe

for pR,−P0.
There are two main routes to approach the DEP for elec-

trons coming in frompR=−` close to theeZe boundary:
first, a trajectory can approach the DEP “directly” by moving
in the vicinity of theSD

eZe; this is the only path open in the
eZespace. In the fullE=0 space, a second route opens up;
trajectories close to theST

eZe approaching the TCP can stay
close to one of the 5 leaves of theSD and move along theSD
toward the DEP. This twofold approach turns out to be the
main new element when moving away from the collinear
spaces. For later reference, we will label the leaves of theSD
according toR1, R2, C, L2 andL1 as indicated in Fig. 3.
Note that the central leafsCd is the one connected directly to
the WR for pR.−P0, whereas the leaves to the right,R1,2,
and to the left,L1,2, do not stay close to the WR when leav-
ing the TCP.

Figure 2 is based on numerical calculations forZ=2; no
changes in the topological structure and in the number of
leaves of theSD are recorded for nuclear chargesZ in the
range 1øZø10. Note that the stability exponents are about
5 times larger in theeZespace than those in the WR; thus,
trajectories approaching the DEP will do so in general along
the Wannier ridge space.

C. Scattering signal for E=0

The phase space dynamics forE=0 is relatively simple;
the conditionṗRù0 ensures in particular that the DEP and
TCP are the only fixed points and there are no periodic orbits
and thus no chaos. We will discuss in this section scattering
signals for theE=0 space in some detail and interpret them
on the basis of the phase space structure presented above.
This will be helpful when turning to the much more complex

dynamics forE,0 which will be investigated in the form of
a scattering problem in Sec. IV.

A set of suitable parameters fully determining the initial
conditions of a scattering trajectory at energyE=0 and L
=0 are shown in Fig. 4; these are in particular the angleu`

measuring the angle between the major axis of the Kepler
ellipse of the inner electron and the incoming direction of the
outer electron, the eccentricitye of the ellipse and the angle
variablew of the action-angle variable pair of the inner elec-
tron at timet=0. The dynamics atE=0 is invariant under
changing the initial energyE1 of electron 1 up to a scaling
transformation asE/E1=0 independent ofE1; we thus fix the
E1=1. For e=1 sdegenerate ellipsed, u` coincides with the
inter-electronic angleu used in the hyperspherical coordi-
nates. The angular momentum of the incoming electron is
determined by the eccentricitye and chosen such that the
total angular momentumL=0. For numerical purposes, we
start the incoming electron atr1=50Z and we compute the
trajectory until the outgoing electron reachesr i =500Z, i =1
or 2.

1. The eZe configuration

We start with the simple case—scattering in the collinear
eZe space—for which the dynamics takes place on the
boundary of the PSOS, see Fig. 2. In Fig. 5, we record the
scattering timesad and energy of the outgoing electronsbd as
a function of the phase anglew. The initial conditions
roughly coincide with a cut through theeZemanifold atpR
=const!−P0. Note also that the scattering time is plotted
here in real time, not in the scaled time used in the McGehee
transformation.

There are two exceptional orbits producing the dips and
peaks atw<0.6 andw<0.8 in the scattering time. The dip
corresponds to an initial conditions onST

eZe and is thus a
triple collision orbit ending in the TCP. Orbits coming from
pR!−P0 close to this collision orbit will approach the TCP
along the stable manifoldST

eZe and will leave the triple colli-
sion region along the unstable manifoldUT

eZe into one of the
arms leading to single-ionization towardpR@ P0. The scat-
tering time has a minimum at that point as the escaping
electron leaves with a diverging amount of kinetic energy as
one approaches the triple collision orbit; see Fig. 5sbd. sNote
that it takes an infinite amount ofscaledtime to reach the

FIG. 3. sColor onlined The 5 pieces of theSD at the cut D in Fig.
2 are labeledR1, R2, C, L2, andL1 as indicated in the figure.

FIG. 4. sColor onlined Parametrization of three-body Coulomb
dynamics as a scattering problem.
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TCP fixed point along theST
eZe, but asR→0 in this limit, the

unscaled momentumpR becomes singular.d
The peak in the scattering time atw<0.8 corresponds to

an orbit with initial conditions on theSD
eZemanifold converg-

ing to the DEP fixed point and thus leading to double ioni-
sation. Orbits close to theSD

eZe take a large amount of scaled
time to pass the DEP which leads to large values of the
hyperradiusR. These orbits leave the DEP region along the
unstable manifoldUD

eZe into one of the arms with vanishing
unscaled momentum. This leads to the dip in the energy of
the outgoing electron in Fig. 5sbd and a diverging scattering
time; see Fig. 5sad. The total energy becomes equidistributed
between the two electrons for trajectories close to the DEP;
the dynamics near the TCP leads, on the other hand, to an
unequal partition of the total energy with an infinitely fast
outgoing electron and an inner electron bound infinitely deep
in the Coulomb singularity at the nucleus.

2. Off-collinear configurations

We will consider off-collinear initial conditions withu`

,p next. Typical scattering signals are very similar to the
one described in the previous section for theeZeconfigura-
tion; see, for example, Fig. 6 withe=0.6 andu`=p /2. One
finds a primary peakP at w<0.5 and a dip atw<−0.4 which
contains, however, a set of 5 peaks here. To understand this
signal, it is helpful to go back to the PSOSu=p in Fig. 2.
One can identify the peakP with an orbit on theSD near the
SD

eZe approaching the DEP “directly” similar to what one
finds in theeZeconfiguration.

New structures emerge in the dip which has ineZebeen
associated with a triple collision orbit onST

eZe. The TCP fixed
point is, however, no longer accessible to off-collinear initial
conditions as the stable manifold of the fixed point,ST, is
fully embedded in theeZespace; see Table I. Whereas near
collision orbits ineZemove away from the TCP along the
unstable manifoldUT

eZe, another route opens up for off-
collinear orbits: escape from the TCP along the Wannier

ridge which is part of the 3-dimensional unstable manifold
UT. The WR forms in fact a heteroclinic connection between
the TCP and DEP and is thus also part of the stable manifold
of the DEP,SD. This and the topology of the phase space
leads to the stretching, folding, and cutting mechanism of the
SD discussed in Sec. III B. Orbits coming close to the TCP
can thus reach the DEP along the 5 sheets of the
3-dimensional stable manifoldSD giving rise to the 5 peaks
in the scattering signal, Fig. 6. The labelsL1, L2, C, R1, and
R2 depicted in the inset of Fig. 6 can indeed be identified
with the leaves of theSD as shown in Fig. 3. The central
peak,C, is in particular associated with the part of theSD
directly connected to the Wannier ridge; the outer peaksL1,
L2, R2, andR1 are related to the folded parts of theSD and
contain orbits which move away from the Wannier ridge af-
ter passing the TCP and before reaching the DEP. The dif-
ference in the behavior of the orbits in the various leaves
becomes obvious when depicting their trajectories ina-p̄a

-pR space as shown in Fig. 7; note that the full orbits are
shown here by projecting out theu dynamics. The center-
peak orbit, Fig. 7sad, moves indeed directly from the TCP to
the DEP along the WR which is in contrast to for example
the L1 orbit shown in Fig. 7sbd. sNote, that orbits corre-
sponding to theL2, R1, or R2 peak show the same qualita-
tive features as theL1 orbit.d

Note that the scattering time diverges at the peaks, both
for the peaks in the dip as well as for the primary peak. The
corresponding orbits are part of theSD which is completely

embedded in theH̄=0 subspace. Orbits on theSD converge
to the DEP and lead thus to double ionisation. The peaks
have forE=0 no internal structure which reflects the regu-
larity of the dynamics due to the monotonic increase ofpR
with time.

We have so far not discussed theu` dependence on the
signal. From Sec. III B, we expect that the peaks move to-
gether and converge towards theST as one approaches the
eZe boundaryu`→p, e→1. This is indeed what one ob-
serves, we will come back to this point when discussing
scaling laws in Sec. IV C. The other limit towards theZee
configuration withu`→0, e→1 is less obvious; one ob-
serves that peaks disappear in pairs consistent with the loop

FIG. 5. The scattering timesunscaledd sad and the energy of the
outgoing electron,Eout, sbd as a function of the phase anglew in the
collineareZeconfigurationsE=0 andE1=1d. Note that the scatter-
ing signals are shown on logarithmic scales.

FIG. 6. The scattering time as a function of the phase angle for
E=0 ande=0.6, u`=p /2, andE1=−E2=1; five distinct peaks ap-
pear in the “dip” associated with close encounters with the triple
collision point.
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configuration of theSD as shown in Fig. 2 until the scattering
signal becomes flat for smallu`. A detailed analysis of how
the nearZeedynamics is connected to the rest of the phase
space will be presented inf25g.

IV. DYNAMICS FOR E,0

We are now ready to venture into the full 5-dimensional
phase spaceE,0 with L=0; we will approach the problem
by analyzing electron scattering signals in a similar way as in
the previous section forE=0. As mentioned in Sec. II, a

smooth transition fromE,0 towardsH̄=0 is achieved by
taking the limitE/E1→0 in the initial conditions, that is, by
considering for exampleE1→`, E2→−` fixing the total
energy atE=−1. In this limit, the inner electron is bound
infinitely deep in the Coulomb well and interaction between
the incoming and bound electrons takes place atR→0. The

dynamics inH̄=0 is in this sense equivalent to a dynamics at
the triple collision pointR=0. The smooth transition implies

that trajectories close toH̄=0 will follow the dynamics in the
E=0 phase space except near the fixed points where the flow
close to the manifoldE=0 is perpendicular to the invariant

subspaceH̄=0 along the directionpR; see Eqs.s7d ands14d.

A. The eZeconfiguration

We start again with theeZeconfiguration which has been
studied extensively in the pastf3,6,8,18g and is well under-
stood by now. Figure 8 shows the scattering signal forE=
−1 andE1=0.2; compared to Fig. 5 forE=0, one finds that
the peak related to theSD is replaced by a wildly fluctuating
signal typical for chaotic scatteringf26g. Note that the dip
related to theST in E=0 is still present.

The dynamics forE,0 takes place in the 3-dimensional
phase space of Fig. 1sad where the boundary is given by the

H̄=0 space. The 2-dimensional stable manifold of the TCP,
ST, is embedded in the 3-dimensionaleZespace spanned by

the 1-dimensional invariant manifoldsST
H̄Þ0 and ST

eZe; note

that only the latter is in the spaceH̄=0; see Table I. TheST
thus intersects the 1-dimensional set of initial conditions for
bothE=0 andEÞ0 independent ofE1. Orbits close to theST

FIG. 7. sColor onlined Scattering orbits corresponding to theC
peak sad and theL1 peaksbd, projected onto thea-p̄a-pR space.
sNote that this is not the PSOSu=p, but the full orbit where theu
dynamics has been projected out.d The initial condition of the orbit
are e=0.6, u`=p /2, E1=1, E2=−1 with phase anglesw=−0.4256
in sad and w=−0.6612 insbd respectively. Projections of the orbit
onto thea-p̄a anda-pR planes are also shown. The circles represent
the positions of the DEP and TCP and their projections.

FIG. 8. The time-delay signal for scattering trajectories in the
eZesubspacesE1=0.2 andE=−1d. A symbolic dynamics in terms
of the symbolsh0,1j can be given for this system; the intervals
labeled by binary strings refer to initial conditions which have the
same symbol code after entering the chaotic scattering region for
the number of symbols given.
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manifold approach the triple collision fixed point atR=0 and
follow the dynamics along the 1-dimensional unstable mani-
fold, UT

eZe, after passing the TCP. The dynamics here is thus
similar to the one forE=0 as discussed in Sec. III C 1; near
collision events lead to ionization of one of the electrons
where the ionizing electron escapes with a diverging amount
of kinetic energy thus giving rise to the dip in the scattering
time.

The behavior of the dynamics near the DEP is linked to
the TCP dynamics via time reversal symmetry. The DEP is
accessible only via the stable manifoldSD

eZe which is embed-
ded in theE=0 space; the DEP can thus not be reached for
E,0 and trajectories can come arbitrary close to the DEP
only in the limit E/E1→0. Orbits near theSD

eZe will, how-
ever, approach the DEP where they either follow the flow
along the unstable directionUD

eZe leading to ionization or

follow UD
H̄Þ0 for equivalently the Wannier orbitsWOdg into

the interior of theeZespace; see Fig. 1sad. In the latter case,
ṗR changes sign and electron trajectories fall back towards
the nucleus. The particles can now remain trapped for some
time in achaotic scattering regionlocated between the TCP

and DEP inside theH̄=0 manifold. The DEP thus acts as an
entrance gate into this chaotic scattering region. The chaotic
scattering intervalsCSId in Fig. 8 replaces theSD peak in the
E=0 scattering time signal shown in Fig. 5; it is directly
linked to the existence of an entrance gate centered at the
DEP fixed point. By time-reversal symmetry, the TCP acts as
the exit gate for single electron ionization.

A closer analysis of the strongly fluctuating signal in the
CSI reveals the well known binary symbolic dynamics
present in theeZe configuration f6–8g. Indeed, it is now
widely believedsbut still not rigorously provedd, that theeZe
configuration behaves like an ideal Smale horseshoe, where
the partition leading to a binary symbolic dynamics is pro-
vided by the stable and unstable manifold of the triple colli-
sion, that is,ST andUD. The chaotic signal in the CSI con-
sists of a series of dips flanked by singularities in the delay
time on either side, see the magnified region in Fig. 8. The
dips correspond to orbits which approach the TCP along the
ST after having entered the chaotic scattering region by com-
ing close to the DEP. Each of these triple collision orbits is
embedded in an interval of escaping trajectories, the bound-
aries of these intervals are given by orbits escaping asymp-
totically with zero kinetic energy of the outgoing electron.
These orbits are thus part of the stable manifold of the
asymptotic periodic orbit where one electron stays at infinity
with zero kinetic energy. This is in contrast to the caseE
=0 where orbits escaping with zero kinetic energy are part of
the stable manifoldSD which leads to double ionization as
mentioned in Sec. III C 1.

The shortest chaotic scattering orbits correspond to the
widest dip in the CSIssee for example Fig. 8 atw=1.075d.
The corresponding orbit for initial energyE1=1000 is plotted
in Fig. 9sad in a− p̄a−pR coordinates. One finds indeed that
the orbit approaches the DEP first before turning toward the
chaotic scattering region. In this particular case, the orbit
stays close to the WO and escapes thus immediately via the
exit gate at the TCP. An orbit close to theSD for E=0 is
shown in Fig. 9sbd for comparison; this orbit can only escape

alongUD
eZe and chaotic scattering is not possible. Other dips

in the CSI are associated with trajectories staying inside the
chaotic scattering region for longer times. The intervals be-
tween dips can be labeled uniquely by a finite binary code
reflecting the order in which binary collisions take place after
entering and before escaping the chaotic scattering region.
We will not elaborate on the symbolic dynamics here, and
refer the interested reader tof6–8g. Note, that the total width

FIG. 9. sColor onlined The shortest chaotic scattering orbit in the
collineareZespace is plotted ina-p̄a-pR coordinates for the initial
conditionsE/E1=−0.001sad; the corresponding orbit forE=0 re-
lated to the peak in Fig. 5 is plotted for comparison insbd.
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of the chaotic scattering interval reduces to zero in the limit
E/E1→0, the corresponding scaling law is presented in Sec.
IV C.

B. Off-collinear configurations

From the analysis of the dynamics in theE=0 phase
space and theeZeconfiguration it is now possible to under-
stand the scattering signals for large parts of theE,0 phase
space by starting from theE/E1→0 limit. We note first that
the stable and unstable manifolds of the triple collision fixed
points which have been so important so far are not contained
in the off-collinear E,0 phase space; indeedSD is fully
embedded inE=0 andST is part of theeZephase space; see
Table I. The latter implies in particular that triple collisions
occur only in theeZeconfiguration. The overall dynamics is,
however, clearly influenced by the invariant manifolds of the
fixed points. A typical scattering time signal is shown in Fig.
10, here for the scattering parameterse=0.6, u`=p /2, E1
=0.2, andE=−1. It shows a primary dip aroundw<−2.3
containing 5 peaks as in the off-collinear scattering data for
E=0, see Fig. 6, as well as a chaotic scattering interval as in
the eZecase; see Fig. 8.

In analogy with theeZeresults, we can identify this pri-
mary CSI around −1.1,w,0.7 with the “direct” route to
the DEP close to theSD

eZe. The DEP and TCP act thus again
as the entrance and exit gates, respectively, into or out of a
chaotic scattering region. In Fig. 11, we show a sequence of
chaotic scattering orbits in configuration space for various
E/E1 belonging to initial conditions in the main dip of the
CSI ssuch as the region aroundw<−0.495 in Fig. 10d. The
trajectories pass the entrance gate near the DEP, but leave the

chaotic region immediately again by coming close to the
TCP. For smallE/E1, interaction between the two electrons
takes place at small values of the hyperradiusR and thus
close to aR=E=0 dynamics; leaving the smallR regime into
the chaotic scattering region after passing the DEP is for
E/E1→0 only possible along the Wannier orbitsor equiva-

lently alongUD
H̄Þ0d. This can be observed in Fig. 11sdd. As

FIG. 10. The scattering time signal foru`=p /2, e=0.6, andE1=0.2.

FIG. 11. sColor onlined Short chaotic scattering orbits in the
x-y plane with initial conditions in the largest dip in the primary
CSI for E1=0.2 sad, 10 sbd, 100 scd, and 1000sdd with fixed total
energyE=−1. The full lines represent the trajectories of the initially
bound electronswith e=0.6d, the dashed lines correspond to the
initially incoming electronswith u`=p /2d. The nucleus is at the
origin and the direction of the semimajor axis of the initially bound
electron is aligned along thex axis.
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E/E1 increases, the trajectories move away from the WO,
but retain the symmetry of the Wannier ridge dynamics. This
can be attributed to the fact, that trajectories coming close to
the DEP will do so along the Wannier ridge due to the dif-
ference in the stability exponents alongSD, that is, lSD

eZe

!lSD

WR; sees13d.
In contrast to the scattering signals for theeZeconfigura-

tion, however, new structures appear at the center of the dips
in the CSI; see Fig. 10. Indeed, when enlarging the intervals
containing the dips, one finds 5 separate peaks similar to
those in the primary “dip” at −2.6,w,−2.0. In contrast to
theE=0 case, each of these peaks is in itself a CSI on further
magnification. The origin of the 5 peaks is always the
same—close encounters with the TCP either via a direct
route close toST

eZe sthe primary dipd or when leaving the
chaotic scattering regionsthe primary CSId. The 5 peaks can
be related to the folding of theSD near the TCP as described
in Sec. III B. TheSD thus provides a bridge between the TCP
and DEP and trajectories can reenter the chaotic scattering
region in this way. This leads to the secondary CSI’s in each
of the 5 peaks; see Fig. 10. Note that the secondary CSI’s
again show structures very similar to the primary CSI and in
fact similar to the CSI in theeZecase.

The peaks in the dips suggest that it is possible to create
increasingly longer cycles of chaotic scattering events by re-
peatedly moving from the DEP to the exit channel, the TCP,
and then along one of the 5 branches of the stable manifold
SD near the TCP back to the DEP. Indeed, on further magni-
fication of the secondary CSI’s, one finds again dips which
contain 5 peaks which on further magnification turn out to be
CSI’s of third order and so on. A whole sequence of self-
similar structures emerges in this way where dips give birth
to chaotic scattering pattern which in turn have dips contain-
ing 5 peaks, etc. The scattering data are thus a macroscopic
manifestation of the structure of the dynamics at the triple
collision point. They reflect a rather curious dynamical fea-
ture, namely a Smale horseshoe, whose entrance and exit
points are short-circuited by two different heteroclinic con-
nections between the two fixed points: the Wannier ridgesfor
E=0d leading from the TCP to the DEP and the Wannier
orbit connecting the DEP back to the TCP. This gives rise to
a conveyor beltdynamics as it is schematically sketched in
Fig. 12.

The apparent similarities in the CSI signals for both the
collinear and off-collinear configurations suggests that the
binary symbolic dynamics remains largely intact for a wide

range of u` values. Only the boundaries of the partition
which is formed by theST itself in theeZecase, is modified,
turning into channels from which it is possible to reenter the
chaotic scattering region. This suggests that the “dips” in
each CSI can be labeled by a binary symbol code related to
the chaotic dynamics in the chaotic scattering region; from
here, trajectories may either escape by coming close to the
TCP or may reenter the chaotic scattering region along 5
distinct paths. We thus expect that the dynamics can be well
described in terms of2+5=7 symbols. However, the exis-
tence of such a partition in this high dimensional problem is
not obvious and may be the key for explaining the approxi-
mate quantum numbers observed in two electron atoms in
terms of the classical dynamics.

The analysis so far leaves many questions open. It is in
particular a big surprise that the dynamical features found in
certain limits, such as the folding of theSD in E=0 space or
the existence of a binary symbolic dynamics in theeZecon-
figuration, can survive in phase space regions far from these
invariant subspaces. Our numerics suggests that the con-
veyor belt mechanism together with ansapproximated sym-
bolic dynamics works in the whole rangep.u`.uc<p /4
and 1.e.ec<0.6 for energy ratios as large asuE/E1u=5.
However, there must be a change in the structure of the dy-
namics eventually. Results obtained in the limiting cases
u`=0—theZeecasef4g—or e=0 f27g certainly make this a
necessity. Especially the transition fromeZe to Zee is of
importance in assigning approximate quantum numbers in
squantumd two-electron atomsf5g, but remain poorly under-
stood from a classical mechanics point of view. The fact that
the conveyor belt is so robust indicates that there are large-
scale structures in phase space at work which have not been
uncovered so far.

C. Scaling laws

Even though the scope for analytic results is limited in
two-electron atom problems, asymptotic scaling laws can be
deduced from the linearized dynamics near the fixed points.
If the DEP is indeed the sole entrance gate into a chaotic
scattering region one would in particular expect universality
in the behavior for all CSI’s. In the previous sections it has
been argued that chaotic scattering trajectories need to come
close to the DEP before they can flow out into the chaotic

scattering region along the unstable manifoldUD
H̄Þ0. In the

limit E/E1→0, these trajectories converge towards theE
=0 manifold and trajectories which will enter the chaotic

scattering region alongUD
H̄Þ0 need to come closer and closer

to the DEP. The phase space region which eventually enters
into chaotic scattering is limited by ejection along the other
unstable manifold of the DEP,UD

eZe.
This implies a scaling law for the widthDCSI of the cha-

otic scattering intervals forE/E1→0 swhich should be inde-
pendent of the prehistory of these trajectory before passing
the DEP entrance gated. Let us consider the evolution of a
one-dimensional set of initial conditions−p,wøpd for
small E/E1 and fixede and u`. The parts of this segment
closest to theSD come close to the DEP; see Fig. 13. Denote
the distance from the 4-dimensionalE=0 manifold and thus
from SD asd, that is, we have

FIG. 12. sColor onlined The conveyor belt mechanism: the TCP
and DEP fixed points and their heteroclinic connections, the Wan-
nier ridgesWRd for E=0 and the Wannier orbitsWOd.
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d ~ uE/E1u. s15d

Chaotic dynamics can be expected only if trajectories reach

some distanceD< P0 from the DEP alongUD
H̄Þ0. The time

TD for the segment to get fromd to D is in linear approxi-
mation svalid for E/E1→0d of the order

TD <
1

lUD

H̄Þ0
ln

D

d
. s16d

During that time, intervals of the sizeD0 on the segment
stretch along theUD

eZe direction according to

DsTDd < D0 expflUD

eZeTDg < D0sD/ddm. s17d

Here,

m =
lUD

eZe

lUD

H̄Þ0
=

1

4
SÎ100Z − 9

4Z − 1
− 1D s18d

is the well known Wannier exponent controlling two-electron
ionization processes forE.0 f16g and quantum resonance
widths f20g near the three particle breakup threshold. The
fraction of trajectories entering the chaotic scattering region

is thus in the limitE/E1→0 given asDCSI~D0/DsTDd that
is,

DCSI~ sd/Ddm ~ U E

E1
Um

, s19d

where the energy dependence follows froms15d. The scaling
law is confirmed by numerical calculations and is indeed
universal, that is, it is independent ofu`, see Fig. 14sad sas
well as ofe, a result not shown hered, and is the same for the
primary CSI and the CSI’s forming the five peaks; see Fig.
14sbd. This clearly demonstrates that the DEP is the sole
entrance gate into the chaotic scattering region.

In Sec. III C 2, we showed that the 5 peaks in the primary
dip are associated with “cutting” the foldedSD at the TCP
which leads to 5 distinct paths from the TCP to the DEP; we
argued that the center peakC is associated with parts of the
SD manifold directly connected to the Wannier ridge; see
Figs. 2 and 3. Trajectories in theC peak thus move along the
Wannier ridge, that is, along theUT

WR. The phase space vol-
ume which can be transferred from the TCP to the DEP along
the Wannier ridge is limited by the flow along the other
unstable manifold of the TCP,UT

eZe. This implies an addi-
tional scaling law for the width of the center peakDC in the
limit u`→p as well asE/E1→0 ssee Fig. 15d: the distance

FIG. 13. sColor onlined Dynamics near the DEP.

FIG. 14. sColor onlined Scaling behavior of the width of the primary CSI for differentu` as well as for the 5 peaksshere for u`

=p /2d. The other parameters aree=1 andE=−1.

FIG. 15. sColor onlined Dynamics near the TCP.
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of a segment of trajectories from theeZespace and thus from
the TCP can be measured in terms ofd~ sp−u`d. Following
a procedure similar to the derivation ofs19d, one finds that
the width of theC peak interval scales as

DC ~ sp − u`dnuE/E1um, s20d

with

n =
lUT

eZe

ReflUT

WRg
= 1 +Î100Z − 9

4Z − 1
, s21d

and m given by s18d. Note, that the second part ofs21d is
valid only for 1/4,Zø9/4; the eigenvalueslUT

WR become
real forZ.9/4, in which case the unstable direction with the
larger eigenvalue is expected to dominate the behavior along
the WR coordinates. Numerical result for the widthDC of the
center peak in the primary dip are shown in Fig. 16 as a
function ofp−u` for fixed E/E1=−0.1 ande=1. The agree-
ment with the predicted scaling law demonstrates that the
center peak is associated with the path from the TCP to the
DEP along the Wannier ridge as described previously.

V. CONCLUSIONS

By using hyperspherical coordinates together with McGe-
hee scaling, it is possible to uncover the structure of the
dynamics near the triple collision in detail. We first analyze
the dynamics for total energyE=0, for which the set of
equations of motions is reduced by one. The dynamics is
here relatively simple compared to theE,0 case due to the
monotonic increase in the momentumpR with respect to the
scaled time. The DEP and TCP fixed points are identified as
the entrance and exit gate into and out of a chaotic scattering
region within theE,0 space, respectively. The two fixed
points are connected along two different heteroclinic connec-
tions, namely the WR forE=0 sgoing from the TCP to the
DEPd and the WO forE,0 sconnecting the DEP back to the
TCPd. This remarkable effect, which has its origin in the
particle exchange symmetry, together with the topology of
the phase space leads to the emergence of a 5 leaves struc-
ture of the stable manifold of the DEP connected to the stable
manifold of the TCP forpR,−P0. This beautiful effect can

be observed in scattering data for bothE=0 andE,0. In the
latter case, initial conditions close to theSD form chaotic
scattering intervalssCSId both for a direct route and for tra-
jectories near the 5 leaves of theSD; the latter come close to
the TCP before entering the chaotic scattering region near the
DEP. Scaling laws for the width of the CSI’s in the
asymptotic limit E/E1→0 and u`→p can be derived in
terms of the linearized dynamics near the fixed points with
scaling exponents given as ratios of stability eigenvalues.

The results described here lay the foundations for a better
understanding of the phase space dynamics for the full
5-dimensional phase spaceE,0. That there is a very robust
structure becomes apparent when comparing Figs. 8 and 10.
The overall signalsneglecting the 5 peaksd remains largely
intact which suggests that the complete binary horseshoe
spanned by theST

HÞ0 and theUD
HÞ0 in the eZespace is con-

tinued into the full phase space. Uncovering this continuation
process will be the key in understanding the electron-
electron correlation effects giving rise to, for example, the
existence of approximate quantum numbers in spectra of
two-electron atoms.
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APPENDIX A: NONSINGULAR EQUATIONS OF MOTION

We give here the fully regularized equations of motion in
the form of a McGehee regularized version of the 3-body
problem with Kustaanheimo-StiefelsKSd regularized binary
collisions. We follow here the treatment in Ref.f8g, where
the regularisation of the nucleus-electron collisions has been
performed by using parabolic coordinates for each electron
which are defined by the transformations

x1 = Q1
2 − Q2

2, y1 = 2Q1Q2, r1 = R1
2 = Q1

2 + Q2
2,

x2 = Q3
2 − Q4

2, y2 = 2Q3Q4, r2 = R2
2 = Q3

2 + Q4
2,

px1
=

Q1P1 − Q2P2

2r1
, py1

=
Q2P1 + Q1P2

2r1
,

px2
=

Q3P3 − Q4P4

2r2
, py2

=
Q4P3 + Q3P4

2r2
, sA1d

together with the Kustaanheimo-Stiefel time transformation
f23,24g

dt = r1r2dt. sA2d

Here,sxi ,yid andspxi
,pyi

d are the position and momentum in
Cartesian coordinates of electroni =1,2moving in the plane.
The notationsQ andP will be used forsQ1,Q2,Q3,Q4d and

FIG. 16. sColor onlined Scaling behavior of the center dip as
function of u`, here fore=1 andE/E1= –0.1.
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sP1,P2,P3,P4d, respectively. The regularized HamiltonianG
can now be written as

G = r1r2sH − Ed

=
1

8
r2sP1

2 + P2
2d +

1

8
r1sP3

2 + P4
2d − Zr2 − Zr1

+ r1r2S− E +
1

r12
D , sA3d

where the electron-electron distancer12 is

r12 = fsQ1
2 + Q2

2d2 + sQ3
2 + Q4

2d2 − 2sQ1Q3 + Q2Q4d2 + 2sQ1Q4

− Q2Q3d2g1/2. sA4d

The Hamilton’s equations of motion,

dQ

dt
=

]G

]P
,

dP

dt
= −

]G

]Q
, sA5d

are now given as

dQ1

dt
=

1

4
r2P1,

dQ2

dt
=

1

4
r2P2,

dQ3

dt
=

1

4
r1P3,

dQ4

dt
=

1

4
r1P4, sA6d

and

dP1

dt
= −H1

4
Q1sP3

2 + P4
2d − 2ZQ1 + 2Q1r2S− E +

1

r12
D

− 2
r1r2

r12
3 fr1Q1 + sQ4

2 − Q3
2dQ1 − 2Q2Q3Q4gJ ,

dP2

dt
= −H1

4
Q2sP3

2 + P4
2d − 2ZQ2 + 2Q2r2S− E +

1

r12
D

− 2
r1r2

r12
3 fr1Q2 − sQ4

2 − Q3
2dQ2 − 2Q1Q3Q4gJ ,

dP3

dt
= −H1

4
Q3sP1

2 + P2
2d − 2ZQ3 + 2Q3r1S− E +

1

r12
D

− 2
r1r2

r12
3 fr2Q3 + sQ2

2 − Q1
2dQ3 − 2Q1Q2Q4gJ ,

dP4

dt
= −H1

4
Q4sP1

2 + P2
2d − 2ZQ4 + 2Q4r1S− E +

1

r12
D

− 2
r1r2

r12
3 fr2Q4 − sQ2

2 − Q1
2dQ4 − 2Q1Q2Q3gJ . sA7d

Singular behavior may occur at the triple collision and thus
in terms containing 1/r12 in sA7d; it turns out, however, that
the KS-time transformationsA2d also lifts the triple collision
singularity from the equations of motion:r12=0 can indeed
only occur if r1=r2=0 due to thee-e repulsion. Terms con-
taining 1/r12 in sA7d indeed vanish proportional toÎR when
r12→0 where the hyperradiusR in the new coordinates takes
on the form

R= ÎsQ1
2 + Q2

2d2 + sQ3
2 + Q4

2d2. sA8d

It is, however, still advantageous to employ McGehee
scaling as introduced in Sec. II in addition to a KS transfor-
mation. By defining

Q̄ =
Q
ÎR

, sA9d

one arrives at a set of coordinates where theQ̄ and r̄12 can
take on nonzero values at the triple collision.sOne can actu-
ally show that r̄12.0 everywhere forEø0, for example
r̄12.0.156. . . forZ=2.d This means in particular that expres-
sions containingr12 in sA7d remain in general finite in the
McGehee-scaled coordinates even at the triple collision. For
numerical calculations, it is thus more convenient to use the
scaled coordinates which are less sensitive to numerical er-
rors due to small denominators.

After introducing the additional time transformation

dt̄ = ÎRdt sA10d

swhich leads to a speedup near the triple collision compared
to using KS-time transformation onlyd, one obtains the equa-

tions of motion for the scaled coordinatesQ̄ as

dQ̄1

dt̄
=

1

4
r̄2P̄1 −

1

2
Q̄1r̄1r̄2p̄R,

dQ̄2

dt̄
=

1

4
r̄2P̄2 −

1

2
Q̄2r̄1r̄2p̄R,

dQ̄3

dt̄
=

1

4
r̄1P̄3 −

1

2
Q̄3r̄1r̄2p̄R,

dQ̄4

dt̄
=

1

4
r̄1P̄4 −

1

2
Q̄4r̄1r̄2p̄R, sA11d

with

P̄ = P, sA12d

and p̄R is the scaled momentum of the hyperradius as ins6d;
it can be expressed in terms of the scaled parabolic coordi-
nates as

p̄R =
1

2
sQ̄1P̄1 + Q̄2P̄2 + Q̄3P̄3 + Q̄4P̄4d. sA13d

The equations of motion forP̄ are the same as insA7d where
the variablesQ, P, t and the energyE are replaced by the

scaled variables; the scaled energyĒ is as ins6d given by

Ē = RE with
dĒ

dt̄
= r̄1r̄2p̄RĒ. sA14d

The full set of equations of motionsA7d, sA11d, and sA14d
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are free of singularities and are numerically stable both in the
vicinity of binary and triple collisions.

APPENDIX B: POINCARÉ SURFACE OF SECTION

A “good” global Poincaré surface of sectionsPSOSd
should fulfill two basic ingredients, namelysid almost all
trajectories cross the PSOS andsii d the vector field is trans-
versal to the PSOSsexcept on lower dimensional invariant
manifoldsd. The latter condition is readily fulfilled for the
PSOSu=p as

u̇ =
pu

sin2 a cos2 a
Þ 0

for all points on the PSOS except those in the invarianteZe
space withu=p andpu=0.

Next, we show that a generic orbit with total angular mo-
mentumL=0 intersects the hypersurfaceu=p in all three
energy regimesE=0, ±1 at least once. Let us assume that
there are trajectories which never intersectu=p for all times.
A possible way for this to happen is, that trajectories oscillate
in the rangeuP f−p ,pg without crossing the PSOS. This
means, there must be turning points of the forms A and B in
Fig. 17, wherepu=0 with −p,u,p. However, employing
s7d, we have at such a point

ṗu =
sin 2a sinu

2f1 − sin 2a cosug3/2H,0 for − p , u , 0 sBd,

.0 for 0 , u , p sAd,
J

sB1d

whereas we would needṗu,0 in scenario A andṗu.0 in B.
These cases can thus be excluded.

The other possibility is that there exist trajectories which
never cross the PSOS by converging to a fixed value inu
with uÞ0 or p and thuspu→0 for t→ ±` as indicated by
the cases C and D in Fig. 17.sOrbits converging towardsu
=0 or p must lie at homoclinic or heteroclinic intersections
of the stable and unstable manifolds of the invariantZeeor
eZesubspaces and are thus of measure zero in the full phase
space.d If convergence inu occurs fort→ ±`, this implies
ṗu→0 and thusa→0 or p /2 in these limits; seesB1d. Fur-
thermore, from Eq.s5d we havepu=pu1

=−pu2
→0, that is,

both electrons have angular momentum zero asymptotically.
This is possible only ifu=0 or p or if one of the two elec-
trons escapes to infinity. The final state must thus be an in-
coming and outgoing scattering trajectory of the type shown
in Fig. 4 with e=1. However, for finitea, the electron-
electron interaction will push the inner electron onto an el-
liptic motion around the nucleus andu will thus crossu=p.
This gives the contradiction and there are no trajectories of
the form C and D as depicted in Fig. 17. Consequently the
hypersurfaceu=p is a suitable Poincaré surface of section
for all energies.
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